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a b s t r a c t

Porous systems are investigated using eigendecomposition of the Laplace matrix. Three parameters; tor-
tuosity, surface-to-pore volume ratio and relaxation rate are derived from the eigenvalue spectrum of the
Laplace matrix and connected to the parameters in the Padé approximation, an expression often used to
describe the time-dependent diffusion coefficient in porous systems. The Padé length is identified for sys-
tems with large pore to connector volume ratio. The results are compared with simulations.
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1. Introduction jump process between pores making the diffusion propagator again
A porous material consists of pores and connectors between the
pores. Diffusion of gas or liquid (henceforth referred to as particles)
in porous systems is often described with a time dependent diffu-
sion coefficient DðtÞ, defined as

DðtÞ ¼
ðr0 � rðtÞÞ2
D E

2nt
; ð1Þ

in n dimensions. In a material consisting of pores with narrow con-
nectors (narrow when compared to the typical length scale of the
pores), the behavior of DðtÞ can be divided into three time regions.
At very short observation times, DðtÞ is dominated by the unre-
stricted diffusion constant D0 which is directly obtained from the
width of the Gaussian diffusion propagator typical for unrestricted
diffusive transport. For intermediate observation times, the time-
dependent diffusion coefficient DðtÞ is lower than D0 as the particles
have started to collide with the obstructing walls. Due to the influ-
ence from the local pore and connector geometry, the diffusion
propagator displays a complicated non-Gaussian behavior in this
region. Finally, in the long time limit the particles move in a pore-
to-pore mode and the transport can effectively be described as a
ll rights reserved.
approximately Gaussian. In this region DðtÞ, converges to the sta-
tionary value D1. The pore-to-pore behavior has been studied pre-
viously, see for example [1–3]. The physical interpretation is that
the particles resume a diffusive behavior on a scale much larger
than the size of the pores. On this scale, the diffusion is said to be
dominated by the diffusive tortuosity s, defined as [4]

1
s
¼ lim

t!1

DðtÞ
D0

: ð2Þ

Since it is difficult to treat the intermediate non-Gaussian re-
gime, the term relaxation rate is often used to describe the rate at
which DðtÞ relaxes to the long time stationary value D1. However
a detailed analysis of the relaxation rate in porous materials is still
lacking [5].

Latour et al. have proposed an interpolation between the short
time region and the long time region, using a two point Padé
approximation [6]. This approximation connects the short and long
time region via a phenomenological relaxation parameter h. The
Padé approximation is to our knowledge not verified theoretically,
but is used in simulations [7,8] and in experiments [9–13] as a
good approximation of DðtÞ although it is not always correct [13].
The approximation is written as

DðtÞ
D0
¼ 1� 1� 1

s

� �
� A

ffiffi
t
p
þ ð1� 1=sÞðt=hÞ

ð1� 1=sÞ þ A
ffiffi
t
p
þ ð1� 1=sÞðt=hÞ

; ð3Þ
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1 L can also be interpreted as a generator of a Markov chain that describe a random
walk between the nodes in the grid, see for example Reversible Markov Chains and
Random Walks on Graphs by D. Aldous and J. Fill (http://stat-www.berkeley.edu/users/
aldous/RWG/book.html) for details.

2 The cumbersome indexing of the eigenvalues as nnx ;ny ;nz is not used but kept in
mind.
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where A is a constant (to be explained below). Theoretical work by
Mitra et al. [14,15] have shown that the initial slope of DðtÞ in por-
ous systems can be characterized by the relation

DðtÞ=D0 ¼ 1� 4
ffiffiffiffiffiffiffiffi
D0t
p

3n
ffiffiffiffi
p
p ðS=VpÞ þ OðD0tÞt � 1; ð4Þ

where n is the dimensionality and ðS=VpÞ is the surface-to-pore vol-
ume ratio. The calculation is a perturbation expansion in the short
time limit, closely related to the asymptotic expansion of the spec-
tral function at short times [17] (see Section 2 for discussion), which
relates geometrical quantities such as volume and surface to the
Laplacian spectrum. The result by Mitra et al. is included in the
Padé approximation, where A in Eq. 3 equals

A ¼ 4
ffiffiffiffiffiffi
D0
p

3n
ffiffiffiffi
p
p ðS=VpÞ: ð5Þ

The h-parameter in the Padé approximation has the dimension
of time and describes the rate of relaxation between the short and
long time limits.

ffiffiffiffiffiffiffiffi
D0h
p

expresses a characteristic length, the Padé
length, related to the rate of relaxation. The Padé length is, in turn,
expected to depend on the pore geometry [6,13] and some indica-
tions supporting this have been reported [6]. In this paper we con-
nect standard spectral analysis of the diffusion operator with the
parameters in Latour’s approximation.

The time evolution of the probability density in a diffusion pro-
cess is given by the partial differential equation

@qðr; tÞ
@t

¼ DDqðr; tÞ; ð6Þ

with Neumann boundary conditions

r � nqðS; tÞ ¼ 0; ð7Þ

defining no flux of probability density through structure surface S
where n is the outward pointing normal to the surface. A natural
approach of solving this problem is to identify basis functions
where the time and space dependence is separated
qiðr; tÞ ¼ fiðrÞgiðtÞ, and then express the full solution in this basis
qðr; tÞ ¼

P
iaiqiðr; tÞ. This results in two separate eigenproblems in

time and space, connected through shared eigenvalues. The eigen-
problem in time, @tgi ¼ k0igi, has exponential functions as solutions.
The spatial eigenproblem is defined by the Helmholtz equation

DfiðrÞ ¼ �kifiðrÞ; ð8Þ

where ki equals

ki ¼
k0i
D0

; ð9Þ

where k0i is the separative constant. A total solution to the diffusion
equation is finally found as a linear combination of eigenvalue solu-
tions, where the weights are chosen to match the initial conditions.

Finding analytical solutions to the spatial eigenvalue equations
is in general not possible. The difficulty lies in imposing the Neu-
mann conditions defined over complex geometries that describe
the walls of the pores and the connecting channels. A special case
when the eigenvalues can be found analytically is orthogonal
bounding geometries (e.g. planar, cylindrical and spherical),
including the extreme case of no boundary. In this case the general
solution can be expressed in terms of harmonic eigenfunctions:

qðr; tÞ ¼
X1
n¼1

Cne�tk0n e2pikn �r: ð10Þ

To find numerical solutions to the diffusion equation, the Lapla-
cian can be approximated by a discrete finite dimensional matrix

Lf ðXÞ ¼ kf ðXÞ; ð11Þ
where we use a discrete approximation L ¼ �D and r! X, a discrete
space vector. The numerical value of the elements of L depend on how
we choose to discretize space. A simple, but often not optimal, choice
is to use a regular grid. For a regular grid in d dimensions, the ele-
ments of L are defined as Lii ¼ 2d� and Lij ¼ �� if the nodes i and j
are adjacent, where � is defined by the spacing between nodes and
can be interpreted as the probability of a particle to move from one
node to an adjacent node.1 This choice of discretization is often re-
ferred to as the finite difference method. In general, L is positive
semi-definite. This follows from two properties of the Laplacian;
integration by parts: (symmetry) �

R
V dxf ðxÞDgðxÞ ¼ �

R
V dxgðxÞ

Df ðxÞ þ S; and (positive semi-definite) �
R

V dxf ðxÞDf ðxÞ ¼
R

V dxj
rf ðxÞj2 þ S, where S is a surface term that vanish due to the Neumann
boundary condition. It follows that L is diagonalizable and has real
non-negative eigenvalues.

The total discrete solution of the diffusion equation is

qðt;XÞ ¼
XN

n¼1

Cne�tk0n fnðXÞ; ð12Þ

where fn are eigenvectors to the Laplacian, L. In the special case of
free diffusion, all eigenvectors fn of L are discretizations of harmonic
functions

mn ¼ eikn �X: ð13Þ

The wave vector kn, is written as 2

kn ¼
nx2p

lx
x̂þ ny2p

ly
ŷþ nz2p

lz
ẑ; ð14Þ

where nx; ny;nz are the wave numbers and lx; ly; lz are the lengths of
the sample. In such a situation, the eigenvalues kn of L are

kn ¼ jknj2 ð15Þ

and together with Eq. 9 we write the useful relation for the free dif-
fusion constant

D0 ¼
k0n
jknj2

: ð16Þ

The harmonic eigenfunctions appearing in the solution to free
diffusion is used in Section 3 to calculate the tortuosity, by the an-
satz of a harmonic solution in the long time limit. Before turning
our attention to the tortuosity, a known spectral result regarding
the relation between the Laplacian spectrum and the surface area
and volume of void space is summarized and connected to the
short time scale of DðtÞ.
2. Surface to volume ratio

The short-time expansion of the time-dependent diffusion coef-
ficient by Mitra et al. [14,15] (Eq. 4) includes the surface-to-volume
ratio of the void space as a proportionality factor. Formally, the
void space is a domain to the Laplacian with Neumann boundary
conditions. Extracting geometrical information of a domain from
the Laplacian spectrum has been of large interest in the last cen-
tury. In 1912 Weyl [18] proved a relation between the volume V,
of the domain and the eigenvalues of the Laplacian. If NðkÞ denotes
the number of eigenvalues smaller than k, Weyl proved that

http://stat-www.berkeley.edu/users/aldous/RWG/book.html
http://stat-www.berkeley.edu/users/aldous/RWG/book.html
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NðkÞ � V
d
2

� �
!ð4pÞd=2 kd=2 as k!1: ð17Þ

Hence it is possible to retrieve the volume of void space by studying
the Laplacian spectrum. In order to obtain more detailed informa-
tion certain functions of the spectrum are used. One such function
is the trace function TðtÞ, representing the Laplace transform of
NðkÞ [17]. The trace function thus equals

TðtÞ ¼
X1

n

e�k0nt; ð18Þ

which we note is the sum of the time functions to the solution of
the diffusion equation. The three dimensional case still contain
many open problems, so we restrict ourself in this very short review
to the two-dimensional case where the corresponding surface-to-
volume ratio is the perimeter-to-area ratio. We denote the pore sur-
face area by Ap and the perimeter by P and we wish to obtain the
quotient P=Ap. For a domain bounded by a broken line, for example
the domain to a mesh Laplacian, Kac [19] (also [20]) proved that the
trace function equals

TðtÞ ¼ A
4pt
þ P

4ð4ptÞ1=2 þ
X

corners

p2 � a2

24pa
þ oð1Þ as t ! 0 ð19Þ

where a is the inside-facing angle at the corner. Work by Kac [19],
Pleijel [21], Gottlieb [22] show that if the resolution of the Laplacian
is increased to the limit of infinite resolution, Eq. 19 transforms to

TðtÞ ¼ A
4pt
þ P

4ð4ptÞ1=2 þ
1� h

6
þ oð1Þ as t ! 0 ð20Þ

where the last extra term denote the number of holes, h, in the do-
main. Many open questions remain regarding the connection be-
tween the trace function and the density function, but a recent
result treats the above result in terms of the density function [23]

NðkÞ ¼ A
4p

k� P
p

ffiffiffi
k
p
þ 1� h

6
as k!1: ð21Þ

The last equation shows a direct relation between the area and
perimeter of the void space and the Laplacian spectrum. Eq. 19
shows a disadvantage of using a rough mesh Laplacian, as the
number of corners is not derivable from the spectrum. It may how-
ever be noted that the corner term is constant and the P=Ap-ratio
may still be obtained by calculating several large eigenvalues of L
and estimating the resulting slope. Interestingly the short-time
expansion of Mitra et al. is similar to the above expressions and im-
ply a direct relation to the Laplacian spectrum. However, as calcu-
lating the surface-to-volume ratio of void space via the Laplacian
spectrum is a numerically intractable method, we stop here and
conclude that the largest eigenvalues of the Laplacian spectrum re-
late to the surface-to-volume ratio of void space.
lx

H

V
0

Fig. 1. A simple porous system. Each eigenvector was projected at the marked
locations H (horizontal) and V (vertical) and are shown in Fig. 2.
3. Tortuosity

In this section we discuss how the tortuosity parameter in La-
tourś approximation can be calculated using the spectrum of the
Laplacian operator. The central idea is to use the ansatz that the
solution to the diffusion equation has a Gaussian propagator in
the long time limit, which is valid provided that the materials
are spatially non-perfect. Similar approaches has been used earlier
[24,2,14,16].

The general solution of the diffusion equation (Eq. 12) shows an
exponential decay in time of all spatial eigenfunctions except those
corresponding to zero eigenvalue (which is unique if the volume is
connected, and represents the infinite time limit where the distri-
bution is uniform). As a result, only the eigenvectors corresponding
to the smallest eigenvalues of L contribute to the solution in the
long time limit. Let the eigenvalues of L be ordered as

0 ¼ k1 6 k2 6 . . . 6 kN: ð22Þ

If the propagator is Gaussian in the long time regime, the eigen-
vectors corresponding to the first eigenvalues will be approxi-
mately harmonic. In fact the Gaussian approximation is valid, not
only for the first smallest eigenvalues, but for all eigenvalues that
have approximately harmonic eigenvectors with wavelength much
longer than the typical size of the pores. Fig. 1 is an example of a
porous system (inspired by chamber-and-throat networks [3]).
The first eigenvectors of the associated Laplacian L are approxi-
mately harmonic implying that the corresponding propagator is
approximately Gaussian. In the intermediate regime, the harmonic
behavior is broken, meaning that the propagator is non-Gaussian.
In Fig. 2 the first three eigenvectors to the Laplacian corresponding
to the porous system in Fig. 1 have been extracted in the directions
marked in Fig. 1 and shows a clear harmonic behavior.

The Gaussian behavior in the long time regime implies the fol-
lowing natural ansatz

Lmn ¼ knmn; ð23Þ

which is valid provided that n is small. mn is the harmonic solution
from Eq. (13) and kn is an eigenvalue to L. Using Eq. (16) we may
now express the long time effective diffusion constant as

D1 ¼
k0

jknj2
; ð24Þ

and calculate the tortuosity as

s�1
s ¼

D1
D0
¼ kn

k2
x þ k2

y þ k2
z

: ð25Þ

The kx; ky and kz can either be retrieved by solving Eq. (23) for a
harmonic function of known, chosen wave numbers, or, by using
the actual eigenfunctions, fn, to the Laplacian and calculate the
approximate wave numbers by a Fourier transform in the x, y
and z-directions. The result is the tortuosity (with index s for
‘‘spectral”) in direction

kxx̂þ kyŷþ kzẑ: ð26Þ

If the structure is isotropic, the contribution is the same regard-
less of direction. For anisotropic structures the tortuosity will be
different in different directions and several eigenvectors must be
used in Eq. (25) to calculate the full diffusion tensor.



Fig. 3. A simple porous system with different pore sizes.
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Fig. 4. The first 20 eigenvalues of two Laplacians corresponding to the porous
system with a fixed pore size (Fig. 1) ð�Þ and similar system but with a pore size
distribution (Fig. 3) ðoÞ. The spectral gap, marked with an arrow for the system with
fixed pore sizes, is made less distinct by broadening the pore size distribution as the
pore-to-pore mode is reached in a time that depends on the pore size. Hence the
time for the pore-to-pore mode is ‘‘smeared out” with a broader pore size
distribution.

Fig. 2. The figure shows horizontal and vertical projections of the first three non-trivial eigenvectors of the Laplacian L of the porous system in Fig. 1 between 0 and lx and 0
and ly . The eigenvectors v2 (dashed line), v3 (dotted line) and v4 (solid line) are projected in horizontal direction (left) and vertical direction (right) at the locations marked in
Fig. 1. The eigenvectors are harmonic, implying a Gaussian behavior of the propagator.
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4. Relaxation rate

In this section the relaxation rate of a diffusing particle in a por-
ous system is estimated via the Laplacian spectrum. We assume
here that the material consists of pores with narrow connections.
This results in a natural time-scale separation between the two
processes where particles diffuse within the pores and where par-
ticles diffuse in a pore-to-pore mode. As the time evolution of the
propagator is closely related to the Laplacian spectrum, the time-
scale separation is identified as a discontinuity in the spectral den-
sity, a spectral gap.3 We then use the ansatz that the time-dependent
diffusion coefficient is of the same form as the Padé expression, with
a relaxation parameter connected to the spectral gap. As mentioned
in the previous section, if the propagator is approximately Gaussian
in the long time limit the diffusion equation is valid, not only in the
short time limit where the time-dependent diffusion coefficient
equals the unrestricted diffusion constant D0, but also approximately
for long times where DðtÞ converges to D1. We question at what rate
the time-dependent diffusion coefficient DðtÞ converges from the
unrestricted diffusion with D0 towards the pore-to-pore mode with
D1? From the time evolution of the diffusive behavior in a porous
system (Eq. (12)), it can be noted that the amplitude of each eigen-
vector vn, will decay with e�tk0n . The contribution for vn, therefore is
time-dependent and is determined by the magnitude of the eigen-
value kn. The eigenvalues of L thus represent different time scales
for the diffusive behavior in the porous system given. We call the
first large shift in the eigenvalue spectrum of L a spectral gap. For
a system with a wide pore size distribution the spectral gap is less
pronounced, as the point in time for when particles begin to move
in a pore-to-pore mode is dependent on the probability for a particle
to exit its pore. Fig. 3 shows an example of a porous system with a
pore size distribution and Fig. 4 shows the corresponding Laplacian
spectrum 1 together with the Laplacian spectrum of the pore system
in Fig. 3 as a reference.

The spectral gap can be used to define the transition rate be-
tween the short and long time diffusive behavior in the system.
Starting with a probability distribution described by all eigen-
modes to L most of the eigenmodes describe diffusion within
pores. Let k" be the eigenvalue corresponding to the slowest relax-
ing eigenmode of the eigenmodes that describe diffusion within
pores and let k# be the eigenvalue corresponding to the fastest
eigenmode representing diffusion in a pore-to-pore mode. These
3 A common definition of the spectral gap is the first non-trivial eigenvalue, but in
this paper, the spectral gap is defined as the first significant gap in the spectrum. In the
extreme case when the pores are completely disconnected the two definitions are
equivalent but our definition is more useful when the pores are connected through
narrow channels.
eigenvalues are precisely the eigenvalues at each side of the spec-
tral gap (see Fig. 4). If we approximate the system to be described
by these two states, we question at what rate the system transfer
from diffusion within pores to the pore-to-pore diffusive mode?
This two-state approximation of the system can be written as



Fig. 5. A pore cell. The pore width x was varied from x ¼ c to x ¼ 4c.
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Fig. 6. The pore width x of the porous system in Fig. 5 was varied and for each x
simulations and calculations where carried out. The figure shows comparson of hs

calculated from the Laplacian spectrum versus the relaxation rate h retrieved by
fitting the Padé approximation to simulations. (1) x ¼ c. (2) x ¼ 4c. The dashed
line is a linear fit.

Fig. 7. A porous system consisting of connected pores of different sizes at random
locations. The material in the picture represents a random pore structure on the
length scale defined by the box. At longer length scales the material is clearly not
random due to the periodic boundary conditions. This artifact does however not
affect the eigenvalues and eigenvectors corresponding to wave numbers contained
within the box.
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qðrðtÞ; tÞ ¼ C"e�k0"t f" þ C#e�k0#t f#: ð27Þ

We introduce a threshold Cthr for when the system is considered
to be dominated by k#

Cthr ¼ e�tðk0"�k0#Þ; ð28Þ

This gives a time hs, when the system is considered to be dominated
by the pore-to-pore mode as

hs ¼
logðCthrÞ

D0ðk" � k#Þ
: ð29Þ

We now use the following ansatz

DðtÞ
D0
¼ 1� ð1� s�1

s Þ �
A
ffiffi
t
p
þ ð1� s�1

s Þh
�1
s t

ð1� s�1
s Þ þ A

ffiffi
t
p
þ ð1� s�1

s Þth
�1
s

; ð30Þ

an expression equivalent with the Padé approximation (note the
subscript s for both the tortuosity and relaxation parameter indi-
cates that the quantity is derived through spectral analysis). The
tortuosity ss is calculated in Eq. (25) and A ¼ 4

ffiffiffiffiffiffi
D0
p

=9
ffiffiffiffi
p
p
ðS=VpÞ,

the expression worked out by Mitra et al. [14] (higher order terms
are neglected). Eq. (30) is of the same form as the Padé expression
(see Eq. (3)) and the parameter s can be identified as ss (see Eq.
(25)) and the relaxation parameter h as hs. The relaxation parameter
hs, works here as a bridge between the short-time (free or non-ob-
structed) diffusion equation with DðtÞ=D0 ¼ 1, and the long time
pore-to-pore diffusion equation with DðtÞ=D0 ¼ s�1

s . As hs is the time
where the system is considered to be in the long time pore-to-pore
mode, this gives an interpretation of the Padé parameter, h, for sys-
tems with a clear spectral gap. For such systems, the characteristic
Padé length

ffiffiffiffiffiffiffiffi
D0h
p

is proportional toffiffiffiffiffiffiffiffi
D0h

p
/ ðk" � k#Þ�1=2

: ð31Þ

Hence, the geometrical impact on the Padé length can be captured
by the gap in the spectrum of L.

5. Calculations

In our calculations we created porous systems with periodic
boundary conditions. The periodic boundary conditions avoid arte-
facts related to closure of a finite volume, e.g. in a closed box there
is no well-defined diffusion at longer time scales. Explicit particle
simulations, used to compare the results from the spectral analysis,
where performed using a particle that jumped a distance chosen
from a Gaussian probability distribution during one time step. If
the jump was too large, as defined by a cutoff radius, or a collision
with the boundary occurred, the jump was subdivided into several
smaller jumps until a valid trajectory had been calculated. A typical
simulation used 50,000 particles and 400,000 time steps and took
about 8 h to perform on a standard PC.

The discretization of space was performed by applying a regular
grid on the porous system, with minimum connectivity, meaning
that each pixel has at most four neighboring pixels. Each pixel
may then be mapped to entries in a matrix A such that Ai;j ¼ 1 if
pixel i and j are connected. The Laplacian matrix may then be ex-
pressed as ��1L ¼ diag

P
iAi;j

� �
� A (to be compared with the Lapla-

cian matrix introduced in Section 1). The eigenvalues/eigenvectors
can now be directly calculated by diagonalizing the large but
sparse matrix L. The diagonalization was performed with LAPACK
routines in MATLAB and 20–30 eigenvalues/eigenvectors could
be extracted within 0–3 h depending on the size of L. To extract
the wave numbers (Eq. 25) the eigenvectors of L are mapped back
to the geometry and a (FFT) Fourier transform, may be performed
in each orthogonal direction. The structure itself imposes frequen-
cies which have to be filtered out, in example by Fourier transform-
ing the trivial eigenvector however, the wave length of the lowest
eigenvectors is directly seen by plotting the eigenvectors. With the
k vectors Eq. (25) may be used for deriving the tortuosity, which is
valid provided that the wavelength of the k is larger than the
length scale of the micro structure, or in other words that the
eigenvalue is sufficiently small for the corresponding eigenvector
to have a clear frequency. The spectral gap is obtained by plotting
the spectrum of eigenvalues, for this, sufficiently many eigenvalues
must be extracted.



Table 1
Data for all structures presented. The diffusion constant D0 equals 1 ½pixels2

=s�.

Structure s�1
s Dð1Þ=D0 hs [s] h [s]

Fig. 1 0.172 0.165 1376.2 1305.0
Fig. 3 0.182 0.181 2339.2 1811.6
Fig. 5 ðx ¼ 4cÞ 0.091 0.085 79.1 82.7
Fig. 7 0.181 0.180 1196.2 1063.8
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Fig. 8. Comparson of simulation (dotted line), best Padé fit (dashed line) and
expression 30 (solid line) of the porous system in Fig. 7.
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6. Simulation and discussion

To test the validity of Eq. (30) explicit Brownian motion simula-
tions described in the previous section where carried out in various
porous systems. The simulation time was taken to give a diffusive
length of at least 10 times the unit cell length and 40k� 120k par-
ticles where used depending on the amount needed for the mean
square displacement to converge. The simulation outcome
DðtÞ=D0 was plotted against time and the long time effective diffu-
sion constant Dð1Þ=D0 was estimated. The Padé approximation [6]
(Eq. (3)) was fitted to the simulation data and from that the relax-
ation parameter h was estimated. Dð1Þ=D0 and the h-parameter
where compared with hs calculated from Eq. (29) (where a thresh-
Fig. 9. Schematic view over Laplacian s
old of 1% was used, note that due to the log function hs is relatively
insensitive to the numerical value of the threshold) and s�1

s calcu-
lated from Eq. (25). To retrieve the surface-to-volume ratio, a large
resolution of the mesh Laplacian is needed. The surface-to-volume
ratio was therefore not calculated but estimated from the initial
slope of DðtÞ=D1. First a single pore cell was used (see Fig. 5) where
the pore width x was varied from having the same width as the
connector, c, to being significantly larger. A comparison of hs and
h (Fig. 6) shows a clear linear dependence as the pore gets large rel-
ative to the connector. This shows that for systems with large pores
and thin connectors, the spectral gap is a good estimate of the
relaxation time. It is interesting to note that the Padé approxima-
tion is still valid in the situation where x ¼ c and no clear spectral
gap is present. A more complicated structure is presented in Fig. 7
where a pore distribution has been used at random locations
resulting in varying lengths for the connections. Fig. 8 shows
expression 30 together with simulation data and the best Padé fit
of simulation data. The surface-to-volume ratio was estimated
from the simulation data. In this case several characteristic diffu-
sive lengths are present, which results in a spectral gap with sev-
eral intermediate states. The relaxation rate estimated from the
spectrum is however still in good agreement with the simulation.
The long time effective diffusion constant estimated from the spec-
trum (Eq. (25)) is, as expected, also in accurate agreement with the
results from the explicit simulations. Table 1 shows calculated
parameters, the estimated relaxation rate from the fitted Padé
expression and the long time behavior Dð1Þ=D0 estimated from
the simulation outcome for all structures presented.
7. Conclusions

In this paper we have shown that it is natural to describe diffu-
sion in porous materials in terms of the Laplacian spectrum (see
Fig. 9 for a schematic view). The three parameters s, ðS=VpÞ and h
in the Padé approximation suggested by Latour et al. [6], can all
be explained by details in the Laplacian spectrum. Computation-
ally, the Laplacian of a porous system is approximated by a matrix
L, that includes the Neumann boundary conditions defining no flux
through the surface of the pore structure. The tortuosity, s, is re-
trieved by calculating the smallest eigenvalues of L. This approach
is general and works not only for porous systems, but for all sys-
tems where a long time effective diffusion constant exists. The sur-
pectrum and diffusion parameters.
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face-to-volume ratio, ðS=VpÞ, is estimated from the slope of the
spectrum at large eigenvalues. For porous systems with a large
pore-to-connector length ratio, the spectral gap can be used as a
good approximation of the relaxation rate. It turns out that the
Padé length,

ffiffiffiffiffiffiffiffi
D0h
p

, for such systems directly relates to the geome-
try, via the spectral gap in the Laplacian spectrum. However, the
Padé approximation seem to work well also for some systems that
does not inhibit a clear time-scale separation (see also for example
[13]). The rate of relaxation is in these cases not directly obtained
from the spectral gap approach presented here. At present the full
relationship between the relaxation parameter in the Padé approx-
imation and the Laplacian spectrum is not known, but the frac-
tional form of the Padé approximation works as a good
interpolation for the time-dependent diffusion coefficient. In gen-
eral it is however clear that the full relaxation process can in prin-
ciple be found by a complete eigenfunction expansion of the
Laplacian.

To summarize; Large eigenvalues of the Laplacian describe DðtÞ
at short times, and spectral analysis connects the surface and vol-
ume to the large eigenvalues of the Laplacian. The ratio ðS=VpÞ, can
be estimated from the slope of large eigenvalues of the Laplacian.
The long time effective diffusion constant can be derived via small
non-trivial eigenvalues of the Laplacian. For systems with a clear
pore structure, the rate of relaxation, hs, can be computed from
the spectral gap of the Laplacian spectrum. A spectral gap in the
spectrum implies a clear time-, and thereby also length-, scale sep-
aration in the system. One such example is a system with a large
pore-to-connector volume ratio.
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